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TESTING FOR REGIME SWITCHING: A COMMENT

BY ANDREW V. CARTER AND DOUGLAS G. STEIGERWALD1

An autoregressive model with Markov regime-switching is analyzed that reflects on
the properties of the quasi-likelihood ratio test developed by Cho and White (2007).
For such a model, we show that consistency of the quasi-maximum likelihood estimator
for the population parameter values, on which consistency of the test is based, does not
hold. We describe a condition that ensures consistency of the estimator and discuss the
consistency of the test in the absence of consistency of the estimator.
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1. INTRODUCTION

IN CHO AND WHITE (2007), “Testing for Regime Switching,” the authors stud-
ied the asymptotic behavior of a statistic that tests the null hypothesis of one
regime against the alternative of Markov switching between two regimes. A key
insight is that a consistent test can be based on a quasi-likelihood that ignores
the Markov structure of regime switching and treats the state variables that
indicate regimes as a sequence of independent and identically distributed ran-
dom variables. Consistency of the test follows from consistency of the quasi-
maximum likelihood estimator (QMLE) under the alternative, which appears
as Theorem 1(b) in Cho and White. Consistency of the QMLE requires that
the expected quasi-log-likelihood attain a global maximum at the population
parameter values. We show that this requirement does not hold for the au-
toregressive process analyzed in Cho and White. Thus, for models of regime
switching in which the conditional mean contains autoregressive components,
consistency of the test proposed by Cho and White has not been established.

For the observable random variables {Xt ∈ R
d}nt=1, d ∈ N, the Markov

regime-switching autoregressive process analyzed by Cho and White (Sec-
tion 3, p. 1697) is

Xt = θ∗ · 1{St=1} − θ∗ · 1{St=2} + �5Xt−1 + ut�(1)

where ut ∼ i�i�d�N(0�1) and St ∈ {1�2} is the sequence of unobserved state
variables that indicate regimes. The insight of Cho and White is to replace the
conditional state probability P(St = 2|σ(Xt−1)), where σ(Xt−1) is the smallest
σ-algebra generated by Xt−1 := (X ′

t−1� � � � �X
′
1), with the unconditional prob-

ability from the stationary distribution of the state variables, π = E[P(St =
2|σ(Xt−1))]. The resulting quasi-likelihood simplifies the model, although se-
rial correlation in the state variables is ignored. Ignoring this serial correlation
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can lead to inconsistency if the conditional state probabilities depend upon the
regressors that enter the state-specific conditional densities.

The quasi-log-likelihood employed by Cho and White for (1), which is based
on the mixture model (p. 1697, line 14), is constructed from

lt := log[(1 −π) ·N(θ1 + αXt−1�σ
2)+π ·N(θ2 + αXt−1�σ

2)]�(2)

To isolate the source of inconsistency in the QMLE from (2), we set the vari-
ance to 1 and let θ1 = μ and θ2 −θ1 = γ. The conditional density functions that
enter (2) are

N(μ+ αXt−1�1)= f (Xt |Xt−1;θ1)

= 1√
2π

exp
[
−1

2
(Xt − αXt−1 −μ)2

]
�

N(μ+ γ + αXt−1�1)= f (Xt |Xt−1;θ2)

= 1√
2π

exp
[
−1

2
(Xt − αXt−1 −μ− γ)2

]
�

A necessary condition for consistency is that n−1
E[∑n

t=1 lt(π�α�μ�γ)] be
maximized at the population parameter values. Because the process is station-
ary,

1
n

n∑
t=1

E[lt(π�α�μ�γ)] = E[lt(π�α�μ�γ)] :=M(π�α�μ�γ)�

We then have

M(π�α�μ�γ) = E log[πλ(Xt�Xt−1)+ (1 −π)]
+ E log f (Xt|Xt−1;θ1)�

where

λ(Xt�Xt−1� θ
1� θ2) = f (Xt |Xt−1;θ2)

f (Xt |Xt−1;θ1)

= exp
[
γ(Xt − αXt−1 −μ)− γ2

2

]
�

The key to establishing inconsistency is to calculate the first derivative of
M(π�α�μ�γ) with respect to the autoregressive coefficient α evaluated at the
population values of the parameters. As we show in Carter and Steigerwald
(2012), the partial derivative of the M function with respect to α is

∂

∂α
M(π�α�μ�γ)= γ2Cπ�γ(π −p12)

(
π(1 −π)

π − α(π −p12)

)
�
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where p12 = P(St = 2|St−1 = 1) and Cπ�γ is a positive constant that depends on
π and γ. Therefore, if the Markov regime process includes a dependence be-
tween subsequent time points, the gradient along α is not equal to 0 at the pop-
ulation parameter values and the expected value of the quasi-log-likelihood is
maximized away from the population parameter values.

Of course, this derivative vanishes under the null hypothesis where π = 0,
π = 1, or γ = 0, as under the null hypothesis there is effectively only one
regime. This derivative also vanishes for π = p12 because, if π = p12, then
P(St = j) = P(St = j|St−1) and the Markov regime process reduces to inde-
pendent draws from the stationary distribution. In this case, the mixture model
(2) forms the population log-likelihood rather than the quasi-log-likelihood.

To understand the source of inconsistency, recall the classic structure that
Wald (1949) proposed to demonstrate consistency of the MLE. The structure
was adapted by Levine (1983) to demonstrate a general property of consistency
for a QMLE, where the quasi-log-likelihood is constructed from conditional
density functions. In applying the logic of Levine to Markov regime-switching
processes, a key requirement is that the conditional state probabilities be in-
dependent of the regressors that enter the state-specific conditional densities.
For the autoregressive process analyzed in Cho and White, the conditional
state probabilities depend upon regressors that enter the state-specific condi-
tional densities and a QMLE is inconsistent. Lack of consistency of a QMLE
holds generally for autoregressive processes, as lagged values of the dependent
variable, which are regressors in the conditional densities, contain information
about lagged values of the state variable, which in turn contain information
about the current value of the state variable.

The inconsistency of a QMLE for Markov regime-switching processes with
autoregressive components extends to processes with moving-average compo-
nents. Inconsistency of a QMLE, however, does not necessarily imply that a
test based on the quasi-likelihood ratio (QLR) is inconsistent. Consistency of
a QLR test only requires that M attain a maximum at some point outside the
null hypothesis space, but not necessarily at the population parameter values.
For the autoregressive process analyzed above, the gradient of the M function
is zero in every coordinate except α, which indicates that M may be maximized
away from the null hypothesis and that the class of models for which the QLR
test is consistent is larger than the class of models for which the QMLE is con-
sistent. A definitive treatment of consistency could be based on demonstration
that, under the alternative hypothesis, the value of the likelihood is bounded
over the null parameter space and that there is always a point in the alternative
space for which the value of the likelihood exceeds the bound. Cho and White
(2011) demonstrated this for the Gaussian AR(1) model. Even for models in
which the QLR test is shown to be consistent, the power is almost certainly
affected by the inconsistency of the QMLE under the alternative.
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